Zero-divisor graphs of Catalan monoid
نویسندگان
چکیده
Let $\mathcal C_{n}$ be the Catalan monoid on $X_{n}=\{1,\ldots ,n\}$ under its natural order. In this paper, we describe sets of left zero-divisors, right zero-divisors and two sided C_{n}$; their numbers. For $n \geq 4$, define an undirected graph $\Gamma(\mathcal C_{n})$ associated with whose vertices are excluding zero element $\theta$ distinct $\alpha$ $\beta$ joined by edge in case $\alpha\beta=\theta=\beta\alpha$. Then first prove that is a connected graph, then find diameter, radius, girth, domination number, clique number chromatic numbers degrees all C_{n})$. Moreover, chordal so perfect graph.
منابع مشابه
On zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کاملA generalization of zero-divisor graphs
In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores
متن کامل$C_4$-free zero-divisor graphs
In this paper we give a characterization for all commutative rings with $1$ whose zero-divisor graphs are $C_4$-free.
متن کاملon zero-divisor graphs of quotient rings and complemented zero-divisor graphs
for an arbitrary ring $r$, the zero-divisor graph of $r$, denoted by $gamma (r)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $r$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. it is well-known that for any commutative ring $r$, $gamma (r) cong gamma (t(r))$ where $t(r)$ is the (total) quotient ring of $r$. in this...
متن کاملZero Divisor Graphs of Posets
In 1988, Beck [10] introduced the notion of coloring of a commutative ring R. Let G be a simple graph whose vertices are the elements of R and two vertices x and y are adjacent if xy = 0. The graph G is known as the zero divisor graph of R. He conjectured that, the chromatic number χ(G) of G is same as the clique number ω(G) of G. In 1993, Anderson and Naseer [1] gave an example of a commutativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe journal of mathematics and statistics
سال: 2021
ISSN: ['1303-5010']
DOI: https://doi.org/10.15672/hujms.702478